Investigations of reproductive processes of the blue zinc violet (Viola guestphalica Nauenb.) from its natural location in Germany (Blankenrode) and from two sites of introduction in Poland (Wełnowiec zinc spoil and a private garden in Sosnowiec-Ostrowy Górnicze) showed significant disturbances resulting in reduced plant fertility. Pollen viability estimated by acetocarmine staining was relatively low, with 54% viable pollen grains in plants from Wełnowiec and 62% from the garden. Specimens from Blankenrode had 80% viable pollen but the pollen grains differed in size conspicuously. Giant abnormal pollen grains accompanied very small ones. Necrosis affected anthers and pistils, including degeneration of whole anthers and ovules, whole embryo sacs or embryo sac elements, and abortion of embryos. The pathway of female gametophyte and embryo development was normal in 61% of the ovules. Necrosis of somatic tissues and generative cells at different developmental stages was found in 28% of the ovules, and irregular development in 11% of them. As a consequence, embryo viability was reduced to 33%. Embryological data indicated that V. guestphalica is not a well-stabilized genotype. The possible origin of the blue zinc violet is discussed.

Key words: Viola L., zinc violets, pollen, megasporogenesis, female gametophyte, embryo, heavy metals.

INTRODUCTION

Two representatives of the section *Melanium* Ging. (pansies), called blue (Viola guestphalica Nauenb.) and yellow [V. calaminaria (Ging.) Lej.] zinc violets, have a limited area of distribution on metal soils in Central Europe. They represent very interesting examples of microevolutionary processes leading to the creation of metal-tolerant genotypes (for review: Ernst, 1999; Bone and Farres, 2001; Wierzbicka and Rostanski, 2002). Yellow zinc violets have a wider area of distribution, occurring on heaps from abandoned zinc mines in Belgium, Germany and the Netherlands since Roman times, although they have declined severely since the beginning of the previous century (Valentine et al., 1968). The blue zinc violet is restricted to the small area of a former lead and zinc mine in Blankenrode near Paderborn (Westphalia, Western Germany). It occurs on heaps which arose in medieval times. They belong to heavy metal communities *Violetalia calaminariae* with vegetation very poor in species (Ellenberg, 1988). Ernst (1968) proposed separating the vegetation with the blue zinc violet in Blankenrode as *Violetum calaminariae westfalicum*. Both violets are very endangered endemic plants and are under legal protection in natural reserves.

The soil in the area occupied by zinc violets is rich in heavy metals such as Pb, Zn and Cd (Ernst 1974). Metal-tolerant plants have developed special mechanisms to allow them to avoid heavy metal toxicity (Ernst, 1990; Ernst et al., 1992; Antosiewicz, 1992). According to Ernst (1974), the shoots of the yellow zinc violet from Brenigerberg contained low amounts of heavy metals, indicating that the taxon does not employ the accumulation strategy. Jędrzejczyk et al. (2002) obtained similar results in an investigation of the effect of high
concentrations of Pb and Zn on biomass production and on the accumulation of these metals in roots and above-ground parts of yellow and blue zinc violets. On the other hand, Meyer (1995) estimated rather high Zn content ranging from 1,608 to 2,001 mg kg⁻¹ dry weight in different parts of blue zinc violets from Blankenrode, with the highest concentration in leaves. Both zinc violets were colonized by arbuscular mycorrhizal fungi, organisms accumulating or binding heavy metals and therefore alleviating metal toxicity (Hildebrandt et al., 1999).

Controversy persists about the taxonomic status, age and origin of metal-tolerant pansies. They have been recognized as varieties, a subspecies, and also a separate species with Viola lutea or V. tricolor indicated as putative ancestors. In 1964, Ernst designated the blue form as a subspecies of the yellow zinc violet and named it V. calaminaria (DC.) Lej. subsp. westfalica (Lej.) Ernst. (cited after Ernst, 1968). On the basis of differences in morphological and cytological characters, Nauenburg (1986) separated the two zinc violets into different species, naming the blue zinc violet V. guestphalica Nauenb. Somatic chromosome numbers 2n = 52 for the blue form and 2n = 48 for the yellow violet were established by Kakes and Everards (1976). In 1999, Nauenburg (1986) and confirmed by Nauenburg (1986), Rostanski et al. (2003), and recently by Hildebrandt et al. (data unpublished).

Zinc violets are very attractive ornamental perennials, and very good plant material to colonize heavy metal spoils. In 1996, blue and yellow zinc violets were introduced to the Welnowiec zinc spoil in Upper Silesia, southern Poland. Seedlings were transferred in 1996 to soil with very low concentrations of Zn (0.02%) and Pb (0.005%) (Jędrzejczyk et al., 2002).

PLANT MATERIAL

The blue zinc violet seeds originated from several sources: (1) the Institute of Botany of the University of Cologne. Seeds were collected from plants grown from seeds harvested in the area of Blankenrode, outside a nature reserve; (2) Naturschutzzentrum – Biologische Station – Hochsauerlandkreis; (3) Björn Malkmus, Rare Seeds Company (www.rareplants.de); (4) from plants colonizing the Welnowiec zinc spoil; and (5) from plants introduced to the private garden in Sosnowiec-Ostrowy Górnicze.

For embryological studies and pollen viability tests, flowers were collected and fixed in a mixture of 96% ethanol and glacial acetic acid (3:1) directly in the field. In the case of the material from Blankenrode, flowers were harvested from plants growing outside the protected area.

POLLEN VIABILITY TESTS

Pollen viability was estimated using aceto-carmin or Alexander’s dyes. Mature pollen grains were isolated from 43 flowers from 17 plants from all sites. Cytosol and nuclei of viable pollen grains stain red by aceto-carmine, while nonviable, empty and shrunken pollen remain colorless (Singh, 2003). Alexander's dye contains malachite green, staining the cellulos of pollen walls green, and acid fuchsin, which stains the pollen protoplasm red (Alexander, 1969; Singh, 2003). Viable pollen grains are red with a green wall, and nonviable ones are entirely green.

Ovary Analysis and Embryo Viability Tests

Conspicuously enlarged ovaries (n = 46) of plants from all sites were analyzed to determine the frequency of normally developed ovules with embryo and endosperm. Dissected ovules were transversally cut with a razor blade and observed under a Zeiss Stemi SV microscope.

To estimate embryo viability, two quick viability tests completed within 24 h were applied. In the tetrazolium test, isolated embryos (n = 175) were incubated in a diluted (1%) solution of 2,3,5-triphenyltetrazolium chloride (Aldrich) according to Dorywalski et al. (1964). Initially the tetrazolium solution is colorless, but changes to red when it comes into contact with hydrogen (reduction) derived from enzymes in the respir-
Reproductive processes in blue zinc violet

Slide preparation for embryological studies

The embryological processes were analyzed in 135 flowers at different stages of development (buds, semi- and fully opened flowers) of plants growing in Blankenrode (44), on the Wełnowiec zinc spoil (39) and in the garden (52). Flowers and young capsules were fixed in a mixture of 96% ethanol and glacial acetic acid (3:1) for 24–48 h, then stored in 70% ethanol at 4°C until used. Material dehydrated in an ethanol series was embedded in paraffin and sectioned 10 µm thick on a rotary microtome (Reichert), transferred to glass slides, stained with Heidenhain’s hematoxylin combined with alcian blue, and mounted in Canada Balsam (Aldrich).

The results were statistically analyzed with the t-test for independent samples (Statistica ver. 5, 1997, Statsoft, Inc.).

Microscope sections were photographed with a Zeiss Axio Cam MRe digital camera with Zeiss Axio Vision 3.0 software. Photographs of capsules and isolated embryos were taken under a Zeiss Stemi SV 11 stereomicroscope equipped with an MC80 microphotography attachment on Kodak film.
Fig. 3. Irregularities and necrosis in the development of female gametophyte, embryo and endosperm in plants from all sites. (a) Disturbed metaphase I with univalents (arrow) scattered along the spindle, (b) Disturbed metaphase II, chromosomes scattered along one spindle (arrow), (c) Tetrad stage with one 2-nucleate megaspore (arrow), (d) Double embryo sac in one ovule; 4-nucleate, 3 nuclei visible (circle), and mature embryo sac with 2 polar nuclei (arrow) and 2 synergids (arrowhead), (e) Few-celled proembryo with necrotic cells (arrow) and endosperm (arrowhead), (f,g) Embryos showing symptoms of necrosis (arrows): (f) Globular-stage embryo, (g) Torpedo-stage embryo. Bars in (a–c) = 20 µm, in (d–g) = 50 µm.

Fig. 4. Capsule and embryos. (a) Capsule with normal and degenerated (arrow) ovules, (b,c) Isolated embryos tested for viability: (b) Tetrazolium test, (c) Indigo carmine staining. Bars in (b,c) = 1 mm, in (a) = 2 mm.
RESULTS

POLLEN VIABILITY

Average pollen viability of plants from all sites was 65%, as estimated by the acetocarmine test (Tab. 1). The frequency of stainable pollen grains was lower in flowers from the areas of introduction (54% at Wełnowiec and 62% in the garden) than from the natural population in Blankenrode (80%). Pollen grains of flowers from Blankenrode, despite their relatively high stainability, differed conspicuously in size. Very small and very big pollen grains occurred together within one anther and even within one pollen sac (Fig. 1a) in several flowers. Such giant pollen had abnormal, multinucleate structure (Fig. 1b,c), with divided nuclei and partly formed cell walls. Additionally, mature, normally shaped pollen grains started to germinate inside the anthers before anthesis (Fig. 1d). The majority of pollen grains had four apertures (Fig. 1e).

FEMALE GAMETOPHYTE, EMBRYO AND ENDOSPERM DEVELOPMENT

Ovules of plants from the garden and from the natural site were investigated embryologically in detail (Tabs. 2, 3; Fig. 2). Specimens from the zinc spoil (Wełnowiec) were not included in the tables because only a few individuals of V. guestphalica survived six years after introduction there, limiting the amount of material.

In 61% of the ovules, the female gametophyte developed normally (Fig. 2) from the chalazal megaspore according to the monosporous Polygonum type. The embryo was formed following a suspensorless Asterad type, and was surrounded by the nuclear endosperm. The female archespore was multicellular, and in consequence more than one megaspore mother cell (MMC) occurred in ~1% of the ovules at the premeiotic stage. In the majority of ovules, only one MMC underwent meiosis. At the late tetrad stage, an intermediate megaspore(s) sporadically prolonged their viability, accompanying the chalazal megaspore developing in a 1-nucleate ES.

In the rest of the analyzed ovules (39%), necrosis of somatic and generative cells (28%) as well as irregularities (11%) accompanied female gametophyte development and further embryo and endosperm formation (Fig. 2). The term "necrosis" is used throughout the paper for dark-stained somatic or generative cells visible in the sectioned material, as no confirmation of programmed cell death (PCD) was provided by special methods visualizing PCD morphotypes.

Disturbed megasporogenesis (meiosis I and II) resulting in abnormal tetrad or polyad formation was observed in 7% of the ovules (Tab. 3). Univalents, multivalents and chromosomes scattered along the

<table>
<thead>
<tr>
<th>TABLE 1. Pollen viability estimated by acetocarmine staining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locality</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Blankenrode</td>
</tr>
<tr>
<td>Wełnowiec zinc spoil</td>
</tr>
<tr>
<td>Garden</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Standard deviations were calculated from the percentages of stainable pollen grains in anthers of analyzed flowers.

<table>
<thead>
<tr>
<th>TABLE 2. Necrosis and irregularities in development of female gametophyte, embryo and endosperm in plants from Blankenrode (B) and the garden (G) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage of development</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

[^1]archespore, megaspore mother cell (MMC), meiosis, tetrad stage.
[^3]ES with egg apparatus, central cell with two polar nuclei or secondary nucleus.
[^4]Zygote + nuclear endosperm; proembryo (few-celled to globular stage); heart- and torpedo-shaped embryos.
spindle were most often observed (Fig. 3a,b). As a consequence, megaspores in tetrads were cytologically unbalanced, with nuclei differing in size, or else polyads (most frequently pentads) were produced (Fig. 3c).

In further stages of female gametophyte development, abnormalities were found mainly in the material from Blankenrode (Tabs. 2, 3). Unorganized, multinucleate (3–12 nuclei) embryo sacs (ES) represented 4% of the analyzed ovules. Double or even triple ESs were formed sporadically (1%), indicating that one megaspore was involved in the formation of the female gametophyte in the majority of ovules. Multiple ESs represented different stages of development; for example, a mature 7- or 8-nucleate ES was accompanied by a 1- or 4-nucleate ES (Fig. 3d). As a consequence, twin embryos were formed in 0.3% of the ovules.

At the stage of embryo and endosperm, only endosperm was noted in 1.5% of the ovules from both sites, with no visible sign of zygote and embryo necrosis (Tab. 3).

Necrosis affected not only the floral generative organs (anthers and pistils), including degeneration of whole anthers and ovaries, but also ovules, the female gametophyte or its elements, embryos and endosperm. Symptoms of necrosis were noted in ovules at different stages of development, starting from early stages (archesporia, megaspore mother cells, megasporogenesis, tetrad stage) to embryo and endosperm formation (globular proembryo to torpedo-shaped embryos) at frequencies of 25% (garden) and 29% (Blankenrode). In plants from the garden and Blankenrode, the highest frequencies of ovules with necrosis were noted at the embryo (60%) and endosperm (59%) stages (Tab. 2). Embryos had dark-stained necrotic cells in the epidermis (Fig. 3e,f), but necrotic cells were also scattered in different parts of the embryo (Fig. 3g). Moreover, the compactness of cell connections between embryonic tissues was lost (Fig. 3e–g).

OVARY ANALYSIS AND ESTIMATION OF EMBRYO VIABILITY

Analysis of dissected ovaries and ovules showed that the frequency of ovules with normally formed embryo and endosperm was reduced, ranging from 25% to 50% depending on the locality, with the lowest from the Wełnowiec zinc spoil and the highest from Blankenrode (Tab. 4). On average, 45% of the ovules were small, undeveloped and degenerated (Fig. 4a), 13% were empty (without embryo and endosperm), and only 6% were large ovules with endosperm (Tab. 4).

Embryo viability may be a factor contributing to poor seed germination in *V. guestphalica*. Embryo viability was evaluated by the color pattern of embryos after tetrazolium treatment. On the basis of topographic analysis, the embryos were classified in seven arbitrarily defined classes (Fig. 5). The majority of embryos fell into two opposite classes: class I, representing completely unstained and therefore nonviable embryos (26%), and class VII with red-colored viable embryos (29%), as presented in Figure 4b. Embryos with intermediate color patterns were included in

TABLE 3. Irregularities in megasporogenesis, female gametophyte (ES), embryo and endosperm development in plants from Blankenrode (B) and the garden (G). Percentages calculated from the total number of ovules, 727 (B) and 598 (G)

<table>
<thead>
<tr>
<th>Stage of ovule development</th>
<th>No. of ovules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irregular meiosis (I and II divisions): multivalents, univalents, chromosomes scattered along the spindle</td>
<td>11 45</td>
</tr>
<tr>
<td>Tetrad with nuclei differing in size</td>
<td>8 -</td>
</tr>
<tr>
<td>Polyads</td>
<td>15 7</td>
</tr>
<tr>
<td>Unorganized 3-5-nucleate ES</td>
<td>17 -</td>
</tr>
<tr>
<td>Unorganized 6-8-nucleate ES</td>
<td>12 -</td>
</tr>
<tr>
<td>Unorganized 9-12-nucleate ES</td>
<td>2 -</td>
</tr>
<tr>
<td>Two egg cells in one ES</td>
<td>2 -</td>
</tr>
<tr>
<td>Doubled ESs</td>
<td>9 -</td>
</tr>
<tr>
<td>Egg cell + secondary nucleus + a few nuclei</td>
<td>2 -</td>
</tr>
<tr>
<td>Twin embryos</td>
<td>2</td>
</tr>
<tr>
<td>Endosperm only</td>
<td>11 9</td>
</tr>
</tbody>
</table>

Total 91 [13%] 61 [10%]

TABLE 4. Ovary and ovule analysis [% ± std.dev.]

<table>
<thead>
<tr>
<th>Locality</th>
<th>No. of plants</th>
<th>No. of flowers (n)</th>
<th>No. of ovules analyzed</th>
<th>Large ovules with embryo and endosperm</th>
<th>Large ovules with endosperm only</th>
<th>Large empty ovules</th>
<th>Large degenerated ovules</th>
</tr>
</thead>
</table>

Standard deviations were calculated from the percentages of ovules in analyzed flowers.
The disturbances in reproductive processes observed in *Viola guestphalica* from all investigated sites, resulting in reduced pollen and embryo viability, indicated that the taxon is not a well-stabilized genotype.

Two possible explanations could be proposed. First, the abnormalities in sexual reproduction, mainly necrosis affecting somatic and generative tissues, were similar to those described in non metal-tolerant taxa colonizing metalliferous soils, such as *Vicia cracca*, *Ranunculus repens*, *Capsella bursa-pastoris*, *Chondrilla juncea* and *Echium vulgare* (Czapik et al., 2002; Izmaiłow, 2000, 2002a,b; Izmaiłow and Biskup, 2003; Biskup and Izmaiłow, 2004; Kośdrńska-Pająk, 2000; 2002). Harsh conditions with physiological drought, low concentrations of nutrients and minerals, and high concentrations of heavy metals are very stressful for non metal-tolerant plants, harming their metabolic processes, and can therefore influence sexual reproduction, reducing plant fertility.

Second, the irregularities observed in the blue zinc violet perfectly fit the developmental abnormalities described in *Viola* hybrids. Hybridization plays a key role in the evolution of the genus *Viola*. Interspecific natural hybrids have been described in the sections *Viola* (Valentine, 1962, 1976; Kuta 1978, 1981, 1988, 1989a,b, 1991; Neuffer et al., 1999) and *Melanium* (Clausen, 1931; Erben, 1996). Hybrids are fertile, partly fertile or sterile, depending solely on whether the genetic barriers between parental species are weak or strong and therefore on the genome homology. In the *Melanium* section, recognized as a young and still-evolving group (Yockteng et al., 2003), genetic barriers between species are notoriously weak. Species are separated mainly by ecological and geographical isolation. Pansies hybridize easily, forming hybrid swarms or populations of introgressive forms (Clausen, 1931; Fothegill, 1938; Kakes and Everards, 1976; Kakes, 1977, 1979; Erben 1996; Kraulcová et al. 1996).

The origin of *Viola guestphalica*, a metal-tolerant taxon, is still unsolved. Recent investigations of both zinc violets and related *Melanium* species using molecular markers (ITS1-5.8S rDNA-ITS2 regions) indicated that blue and yellow zinc violets form a clade with *V. lutea* (Hildebrandt et al., unpubl. data), the suggestion being that zinc violets evolved from *V. lutea* as ecotypes on contaminated sites and consequently were a subspecies of *V. lutea*, with the blue zinc violet being named *V. lutea* subsp. *westfalica*. Strong evidence in favor of the hybrid origin hypothesis was provided by current embryological data. Representatives of the blue zinc violet from the natural site, Wełnowiec zinc spoil and the garden (with very low concentrations of heavy metals) showed abnormalities in sexual reproduction typical for hybrids. In male (Hildebrandt et al., unpubl. data) and female meiosis (this paper), multivalents and univalents instead of bivalents were formed in the first meiotic division. Additionally, chromosomes were scattered along the spindle(s) in both meiotic divisions. The presence of multivalents confirmed the high genome homology with the putative parental species, which is not surprising as the species of the *Melanium* section are closely related. The abnormalities accompanying male and female gametophyte development were found to be similar to those of other *Viola* hybrids. Pollen in the blue zinc violet varied conspicuously in size and structure even within one pollen sac (e.g., giant

DISCUSSION

TABLE 5. Embryo viability assessed by tetrazolium test

<table>
<thead>
<tr>
<th>Locality</th>
<th>No. of embryos analyzed</th>
<th>Viable embryos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blankenrode</td>
<td>55</td>
<td>35</td>
</tr>
<tr>
<td>Wełnowiec zinc spoil</td>
<td>55</td>
<td>29</td>
</tr>
<tr>
<td>Garden</td>
<td>65</td>
<td>34</td>
</tr>
<tr>
<td>Total</td>
<td>175</td>
<td>33</td>
</tr>
</tbody>
</table>

classes II–VI (45%). The lowest frequency of viable embryos was estimated in seeds from the Wełnowiec zinc spoil (29%), the highest from Blankenrode (35%), and almost the same from the garden (34%), making the average 33% (Tab. 5).

The indigo carmine test, in which, unlike in the tetrazolium test, viable embryos remain stainless (Fig. 5c), and the seed germination test confirmed the results from quick tetrazolium evaluation of embryo viability.

Fig. 5. Frequency of embryos in classes distinguished on the basis of stainability. Class I – embryos colorless; Class II – embryos stained 10%; Class III – embryos stained 30%; Class IV – embryos stained 50%; Class V – embryos stained 70%; Class VI – embryos stained 90%; Class VII – embryos stained 100%.

The lowest frequency of viable embryos was estimated in seeds from the Wełnowiec zinc spoil (29%), the highest from Blankenrode (35%), and almost the same from the garden (34%), making the average 33% (Tab. 5).

The indigo carmine test, in which, unlike in the tetrazolium test, viable embryos remain stainless (Fig. 5c), and the seed germination test confirmed the results from quick tetrazolium evaluation of embryo viability.
multinucleate or multicellular pollen grains, very small ones, empty and shrunken pollen, and regularly shaped four-aperturate pollen grains). Similar variability in pollen morphology, where the largest pollen grains were more than twice as big as the smallest ones, was observed in natural interspecific hybrids of the Viola section (Kuta, 1978, 1981, 1989a,b). Additional features characteristic for hybrids, such as unorganized, multinucleate female gametophytes, and multiple ESs, described previously in natural hybrids of Viola (e.g., V. epipsila × V. palustris, Kuta, 1989a,b; V. × wittrockiana – tripled hybrid V. tricolor × V. lutea × V. altaica, Opoka, unpubl. data), were also found in the blue violet, although with rather low frequency (1% and 4%, respectively).

The current embryological data strongly support the hypothesis (Kakes, 1979) that the blue violet is a young species of hybrid origin, derived from two or more violet species. Since the blue violet seems close to V. lutea (2n = 48), this taxon should be put forward as one of the putative parental species. The involvement of V. tricolor (2n = 26) as the other parent cannot be excluded, as natural hybrids of V. lutea × V. tricolor have been described from numerous European populations (Clausen, 1931; Fothergill, 1938; Krahulcová et al., 1996). It is worth mentioning that in such hybrid swarms, some individuals resembled the blue violet in morphology and chromosome numbers.

The observed abnormalities in sexual reproduction and the reduced fertility of the blue violet could be a consequence of its hybrid origin, coupled with the negative influence of extreme environmental conditions. To resolve the origin of zinc violets, advanced genome analysis of zinc violets and putative parental species using molecular methods as FISH and GISH is needed. Molec-ulcular markers such as AFLPs (or ISSRs) or allozymes could probably also be of help.

ACKNOWLEDGEMENTS

Seeds were kindly provided by the Institute of Botany of Cologne University. We are grateful to Dr. Józef Mitka of the Jagiellonian University for stimulating discussion on hybrid speciation. This work was supported by Jagiellonian University research grant DBN-414/CRBWK-VI-1/2003.

REFERENCES

